基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统小波网络在进行故障诊断时存在收敛速度慢,对初始参数敏感的缺陷,提出了基于蚁群初始化小波网络的水电机组振动故障诊断方法.该方法采用蚁群算法对小波网络的参数进行初步寻优,将优化后的参数作为小波网络的初始化参数;利用水电机组振动信号频谱分量的幅值作为特征向量,对蚁群初始化小波网络进行训练,实现振动特征集到故障集的有效映射,达到故障诊断的目的.实例诊断结果表明:与传统小波网络及蚁群优化小波网络相比,基于蚁群初始化小波网络的水电机组振动故障诊断方法具有较快的收敛速度和较强的泛化能力,为水电机组振动故障在线诊断提供了有效的解决方案.
推荐文章
网络化水电机组振动监测和故障诊断系统
水电机组
振动监测
故障诊断
互联网
虚拟仪器
基于SA-WNN模型的水电机组故障诊断研究
模拟退火算法
小波神经网络
水电机组
故障诊断
基于小波神经网络的电机故障诊断研究
异步电动机
故障诊断
转子故障
小波神经网络
蚁群算法在电机故障诊断中的应用
蚁群算法
神经网络
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于蚁群初始化小波网络的水电机组振动故障诊断
来源期刊 水力发电学报 学科 工学
关键词 动力机械工程 故障诊断 小波网络 水电机组 蚁群算法
年,卷(期) 2014,(2) 所属期刊栏目
研究方向 页码范围 251-258
页数 分类号 TM312
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 符向前 武汉大学水力机械过渡过程教育部重点实验室 31 358 11.0 18.0
2 肖志怀 武汉大学水力机械过渡过程教育部重点实验室 79 448 10.0 16.0
3 卢娜 武汉大学水力机械过渡过程教育部重点实验室 11 67 6.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (41)
共引文献  (133)
参考文献  (12)
节点文献
引证文献  (10)
同被引文献  (42)
二级引证文献  (17)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(6)
  • 参考文献(1)
  • 二级参考文献(5)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(10)
  • 参考文献(1)
  • 二级参考文献(9)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(3)
  • 参考文献(2)
  • 二级参考文献(1)
2008(4)
  • 参考文献(2)
  • 二级参考文献(2)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(4)
  • 引证文献(3)
  • 二级引证文献(1)
2017(4)
  • 引证文献(2)
  • 二级引证文献(2)
2018(7)
  • 引证文献(2)
  • 二级引证文献(5)
2019(9)
  • 引证文献(1)
  • 二级引证文献(8)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
动力机械工程
故障诊断
小波网络
水电机组
蚁群算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水力发电学报
月刊
1003-1243
11-2241/TV
小16开
中国北京清华大学水电工程系
1982
chi
出版文献量(篇)
3865
总下载数(次)
7
总被引数(次)
47197
论文1v1指导