基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Based on the statistical characteristics analysis of random noise power and autocorrelation function, this paper proposes a de-noising method for track state detection signal by using Empirical Mode Decomposition (EMD). This method is used to noise reduction refactoring for the first Intrinsic Mode Function (IMF) component in accordance with the “random sort-accumulation-average-refactoring' order. Signal autocorrelation function characteristics are used to determine the cut-off point of the dominant mode. This method was applied to test signals and the actual inertial unit signals;the experimental results show that the method can effectively remove the noise and better meet the precision requirement.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Test the topographic steady state in an active mountain belt
Taiwan
Uplift
Denudation
River profile
Sediment yield
In-situ 10Be
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A De-Noising Method for Track State Detection Signal Based on the Statistical Characteristic of Noise
来源期刊 交通科技期刊(英文) 学科 医学
关键词 TRACK Inspection LONG Wave IRREGULARITY Empirical Mode DECOMPOSITION DE-NOISING
年,卷(期) 2014,(4) 所属期刊栏目
研究方向 页码范围 327-336
页数 10页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
TRACK
Inspection
LONG
Wave
IRREGULARITY
Empirical
Mode
DECOMPOSITION
DE-NOISING
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
交通科技期刊(英文)
季刊
2160-0473
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
254
总下载数(次)
0
总被引数(次)
0
论文1v1指导