基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Hybrid model is a popular forecasting model in renewable energy related forecasting applications. Wind speed forecasting, as a common application, requires fast and accurate forecasting models. This paper introduces an Empirical Mode Decomposition (EMD) followed by a k Nearest Neighbor (kNN) hybrid model for wind speed forecasting. Two configurations of EMD-kNN are discussed in details: an EMD-kNN-P that applies kNN on each decomposed intrinsic mode function (IMF) and residue for separate modelling and forecasting followed by summation and an EMD-kNN-M that forms a feature vector set from all IMFs and residue followed by a single kNN modelling and forecasting. These two configurations are compared with the persistent model and the conventional kNN model on a wind speed time series dataset from Singapore. The results show that the two EMD-kNN hybrid models have good performance for longer term forecasting and EMD-kNN-M has better performance than EMD-kNN-P for shorter term forecasting.
推荐文章
基于K-Nearest Neighbor分类算法的异常检测模型
异常检测
算法
系统调用
特权进程
网络安全
汽车交流发电机“Turn on Speed”的探讨
汽车交流发电机
turn
on
speed
cut—in
speed
测试方法
mode decomposition-support vector machine method
海洋表面温度
经验模态分解
支持向量机
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Empirical Mode Decomposition-k Nearest Neighbor Models for Wind Speed Forecasting
来源期刊 电力能源(英文) 学科 地球科学
关键词 WIND SPEED Forecasting Empirical MODE DECOMPOSITION k Nearest NEIGHBOR
年,卷(期) 2014,(4) 所属期刊栏目
研究方向 页码范围 176-185
页数 10页 分类号 P4
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
WIND
SPEED
Forecasting
Empirical
MODE
DECOMPOSITION
k
Nearest
NEIGHBOR
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电力能源(英文)
月刊
2327-588X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
568
总下载数(次)
0
总被引数(次)
0
论文1v1指导