基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
DEC算法是一种基于支持向量机的改进算法,但是研究表明,对于某些不平衡数据集,DEC分类器不能达到较高的少数类分类精度。针对这种情况,提出了一种基于欠抽样方法和DEC方法结合的新算法US-DEC来提高少数类分类精度。先用一个新的欠抽样方法来预处理数据集,再用DEC分类器训练处理过的数据集。通过在七个不平衡数据集上的仿真实验,比较了US-DEC算法和支持向量机,欠抽样方法以及DEC方法的分类性能。实验结果表明,在提高每类数据集的少数类分类精度上,US-DEC算法要优于其他算法。
推荐文章
剪枝与欠采样相结合的不平衡数据分类方法
机器学习
不平衡数据集
剪枝技术
欠采样技术
交叉验证
合并分类器增强算法
面向不平衡数据分类的复合SVM算法研究
不平衡数据
支持向量机
自适应合成采样
不同错误代价
修正算法
不平衡数据的集成分类算法综述
不平衡数据
集成学习
分类
代价敏感
数据采样
面向不平衡数据分类的KFDA-Boosting算法
核费希尔判别分析
集成学习
不平衡数据
分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 欠抽样和DEC相结合的不平衡数据分类算法
来源期刊 计算机技术与发展 学科 工学
关键词 不平衡数据集 支持向量机 预处理数据集 欠抽样 DEC
年,卷(期) 2014,(4) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 110-113
页数 4页 分类号 TP301.6
字数 3323字 语种 中文
DOI 10.3969/j.issn.1673-629X.2014.04.028
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴敏 南京邮电大学理学院 26 139 7.0 10.0
2 李雷 南京邮电大学理学院 82 539 12.0 18.0
3 张化朋 南京邮电大学理学院 11 26 4.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (48)
参考文献  (10)
节点文献
引证文献  (7)
同被引文献  (23)
二级引证文献  (38)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(8)
  • 参考文献(1)
  • 二级参考文献(7)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(4)
  • 参考文献(4)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(4)
  • 引证文献(1)
  • 二级引证文献(3)
2018(16)
  • 引证文献(3)
  • 二级引证文献(13)
2019(19)
  • 引证文献(0)
  • 二级引证文献(19)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
不平衡数据集
支持向量机
预处理数据集
欠抽样
DEC
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导