基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Adaptive cluster sampling (ACS) has been a very important tool in estimation of population parameters of rare and clustered population. The fundamental idea behind this sampling plan is to decide on an initial sample from a defined population and to keep on sampling within the vicinity of the units that satisfy the condition that at least one characteristic of interest exists in a unit selected in the initial sample. Despite being an important tool for sampling rare and clustered population, adaptive cluster sampling design is unable to control the final sample size when no prior knowledge of the population is available. Thus adaptive cluster sampling with data-driven stopping rule (ACS’) was proposed to control the final sample size when prior knowledge of population structure is not available. This study examined the behavior of the HT, and HH estimator under the ACS design and ACS’ design using artificial population that is designed to have all the characteristics of a rare and clustered population. The efficiencies of the HT and HH estimator were used to determine the most efficient design in estimation of population mean in rare and clustered population. Results of both the simulated data and the real data show that the adaptive cluster sampling with stopping rule is more efficient for estimation of rare and clustered population than ordinary adaptive cluster sampling.
推荐文章
State of rare earth elements in the rare earth deposits of Northwest Guizhou, China
Kaolinite
Clay rocks
Rare earth deposits
Element existence state
Information extraction
Northwest Guizhou Province
Application of K-means and PCA approaches to estimation of gold grade in Khooni district (central Ir
K-means method
Clustering
Principal
component analysis (PCA)
Estimation
Gold
Khooni district
Cluster-Merge本体构造算法
本体学习
文档聚类
k-means聚类算法
相似度
本体合并
基于Adaptive Lasso的股票指数跟踪问题研究
Adaptive Lasso
指数跟踪
沪深 300 指数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Efficiency of the Adaptive Cluster Sampling Designs in Estimation of Rare Populations
来源期刊 统计学期刊(英文) 学科 医学
关键词 ADAPTIVE CLUSTER Sampling with STOPPING Rule (ACS’) Ordinary ADAPTIVE CLUSTER Sampling (ACS) Horvitz Thompson ESTIMATOR (HT) Hansen-Hurwitz ESTIMATOR (HH) Relative EFFICIENCY
年,卷(期) 2014,(5) 所属期刊栏目
研究方向 页码范围 412-418
页数 7页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ADAPTIVE
CLUSTER
Sampling
with
STOPPING
Rule
(ACS’)
Ordinary
ADAPTIVE
CLUSTER
Sampling
(ACS)
Horvitz
Thompson
ESTIMATOR
(HT)
Hansen-Hurwitz
ESTIMATOR
(HH)
Relative
EFFICIENCY
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
论文1v1指导