We show that most of the empirical or semi-empirical isotherms proposed to extend the Langmuir formula to sorption (adsorption, chimisorption and biosorption) on heterogeneous surfaces in the gaseous and liquid phase belong to the family and subfamily of the BurrXII cumulative distribution functions. As a consequence they obey relatively simple differential equations which describe birth and death phenomena resulting from mesoscopic and microscopic physicochemical processes. Using the probability theory, it is thus possible to give a physical meaning to their empirical coefficients, to calculate well defined quantities and to compare the results obtained from different isotherms. Another interesting consequence of this finding is that it is possible to relate the shape of the isotherm to the distribution of sorption energies which we have calculated for each isotherm. In particular, we show that the energy distribution corresponding to the Brouers-Sotolongo (BS) isotherm [1] is the Gumbel extreme value distribution. We propose a generalized GBS isotherm, calculate its relevant statistical properties and recover all the previous results by giving well defined values to its coefficients. Finally we show that the Langmuir, the Hill-Sips, the BS and GBS isotherms satisfy the maximum Bolzmann-Shannon entropy principle and therefore should be favoured.