基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对临床上肛门失禁导致的直肠感知功能丧失,提出了一种基于粒子群优化(PSO)的支持向量机(SVM)重建患者直肠感知功能的方法.分析人体直肠压力生理特征,将典型直肠压力收缩波形中的巨大移行性收缩(HAPC)作为产生便意的主要依据,利用小波包分析对直肠压力信号进行特征提取,通过提取的特征向量对基于SVM的直肠感知预测模型进行训练,使用PSO算法对SVM的参数进行优化,并利用训练后的模型进行便意预测,同时对比分析了参数优化后的SVM和不同核函数的SVM便意预测的准确率.实验结果表明,所提出方法切实有效,能够帮助患者重建直肠感知功能.
推荐文章
基于粒子群算法优化支持向量机的模拟电路诊断
故障诊断
模拟电路
粒子群优化
多小波变换
支持向量机
基于粒子群算法优化支持向量机汽车故障诊断研究
粒子群算法
支持向量机
汽车故障诊断
遗传聚类
粒子群优化的隐空间光滑支持向量机算法
隐空间
支持向量机
熵函数
粒子群优化
共轭梯度法
粒子群算法优化支持向量机的网络流量混沌预测
粒子群算法优化
支持向量机
网络流量
混沌预测
平均绝对误差
蚁群算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群优化的支持向量机用于直肠感知功能重建
来源期刊 上海交通大学学报 学科 生物学
关键词 支持向量机 粒子群优化 直肠感知 小波包分解
年,卷(期) 2014,(2) 所属期刊栏目
研究方向 页码范围 168-172
页数 分类号 Q811.2
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 朱晓锦 上海大学机电工程与自动化学院 67 280 10.0 12.0
2 邵勇 上海大学机电工程与自动化学院 24 116 6.0 9.0
3 姜恩宇 上海大学机电工程与自动化学院 6 7 2.0 2.0
5 昝鹏 上海大学机电工程与自动化学院 12 28 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (41)
共引文献  (3)
参考文献  (11)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(3)
  • 参考文献(0)
  • 二级参考文献(3)
1993(5)
  • 参考文献(0)
  • 二级参考文献(5)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(5)
  • 参考文献(0)
  • 二级参考文献(5)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(4)
  • 参考文献(4)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
支持向量机
粒子群优化
直肠感知
小波包分解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
上海交通大学学报
月刊
1006-2467
31-1466/U
大16开
上海市华山路1954号
4-338
1956
chi
出版文献量(篇)
8303
总下载数(次)
20
总被引数(次)
98140
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导