基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高车牌字符识别率,提出一种考虑整体和局部特征,分别采用两级SVM分类器的识别方法,其工作模式为:第一级分类器针对所有字符,在识别结果属于形似字符的情况下,送入对应的第二级分类器作进一步识别.第一级分类器提取字符图像整体的各网格比例作为SVM的分类特征.将形似字符分为5组,分别对应的5个SVM构成第二级分类器.通过分析各组内字符笔画特征的局部相异性,提取相应网格中字符轮廓的垂直、水平投影方差、比例等特征并进行特征融合作为相应SVM分类特征.实验结果表明,该方法字符平均识别时间为23.45 ms,且在形似字符的识别率和总体识别率方面均优于模板匹配、神经网络和同类的分级识别方法,是一种有效的方法.
推荐文章
基于方向轮廓的小波分解车牌字符识别方法
车牌识别
字符识别
方向轮廓
小波变换
特征匹配
基于FPGA的实时车牌字符识别方法的研究
多模板匹配
字符识别
实时
基于权系数标识符矩阵的车牌字符识别方法
车牌字符识别
权系数标识符矩阵
模板匹配
闭合区域检测
像素值跳变特征
基于特征统计的车牌非汉字字符识别方法
特征统计
车牌
字符识别
图像处理
投影分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于机器视觉的分级车牌字符识别方法
来源期刊 电视技术 学科 工学
关键词 车牌字符识别 两级分类器 SVM 局部特征 特征融合
年,卷(期) 2014,(11) 所属期刊栏目 视频应用与工程
研究方向 页码范围 198-201
页数 4页 分类号 TN911.73|TP391.41
字数 3164字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 林川 广西科技大学电气与信息工程学院 26 66 5.0 7.0
5 覃金飞 广西科技大学电气与信息工程学院 9 13 2.0 3.0
6 吴正茂 广西科技大学电气与信息工程学院 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (99)
参考文献  (8)
节点文献
引证文献  (6)
同被引文献  (32)
二级引证文献  (3)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(4)
  • 引证文献(3)
  • 二级引证文献(1)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
车牌字符识别
两级分类器
SVM
局部特征
特征融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电视技术
月刊
1002-8692
11-2123/TN
大16开
北京市朝阳区酒仙桥北路乙7号(北京743信箱杂志社)
2-354
1977
chi
出版文献量(篇)
12294
总下载数(次)
21
总被引数(次)
42632
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导