Grain boundary energy is very important in determining properties of ultra fine grain and nano structure materials. Molecular dynamics were used to simulate grain boundary energy at different misorientations for Al, Cu and Ni elements. Obtained results indicated well compatibility with theoretic predictions. It was obtained that higher cohesive energy results in higher grain boundary energy and depth of CSLs. In this manner, Ni had the highest and Al had the lowest cohesive energy and grain boundary energy. Also, a linear correlation was obtained between GBE of elements, which was related to relative cohesive energy.