基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Theoretical results related to properties of a regularized recursive algorithm for estimation of a high dimensional vector of parameters are presented and proved. The recursive character of the procedure is proposed to overcome the difficulties with high dimension of the observation vector in computation of a statistical regularized estimator. As to deal with high dimension of the vector of unknown parameters, the regularization is introduced by specifying a priori non-negative covariance structure for the vector of estimated parameters. Numerical example with Monte-Carlo simulation for a low-dimensional system as well as the state/parameter estimation in a very high dimensional oceanic model is presented to demonstrate the efficiency of the proposed approach.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Some Properties of a Recursive Procedure for High Dimensional Parameter Estimation in Linear Model with Regularization
来源期刊 统计学期刊(英文) 学科 数学
关键词 Linear Model REGULARIZATION RECURSIVE Algorithm Non-Negative COVARIANCE Structure EIGENVALUE DECOMPOSITION
年,卷(期) 2014,(11) 所属期刊栏目
研究方向 页码范围 921-932
页数 12页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Linear
Model
REGULARIZATION
RECURSIVE
Algorithm
Non-Negative
COVARIANCE
Structure
EIGENVALUE
DECOMPOSITION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
论文1v1指导