基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
文章提出一种新的基于支持向量回归(SVR)和稀疏表示的图像超分辨重建算法。SVR对输入数据有良好预测输出类别能力。图像统计表明,图像块可以从过完备字典中通过稀疏线性组合很好的表示。对一幅低分辨率输入图像,可以将图像超分辨问题视为在高分辨图像中估计其像素位置。与传统的支持向量回归方法相比,本文采用的特征是不同类型的图像块的稀疏表示。研究表明,稀疏表示作为特征对噪声有一定的鲁棒性。实验结果表明,本文方法与传统支持向量回归方法相比在图像重建质量上有一定的优势。
推荐文章
基于MAP算法的图像超分辨率重建
超分辨率
图像重建
最大后验概率
基于稀疏表示的图像超分辨率重建算法
超分辨率重建
稀疏表示
L1范数优化
字典学习
粒子群优化算法
特征提取算子
基于亚像素的图像超分辨率重建算法研究
超分辨率重建
图像插值
亚像素
视觉效果
峰值信噪比
基于稀疏表示的图像超分辨率重建算法设计
超分辨率重建
稀疏表示
字典学习
图像
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量回归的图像超分辨率重建算法
来源期刊 电子技术 学科
关键词 图像超分辨 支持向量回归 稀疏表示
年,卷(期) 2014,(4) 所属期刊栏目 电子技术研发
研究方向 页码范围 4-7
页数 4页 分类号
字数 2493字 语种 中文
DOI 10.3969/j.issn.1000-0755.2014.04.002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡访宇 中国科学技术大学电子工程与信息科学系 40 231 9.0 13.0
2 范开乾 中国科学技术大学电子工程与信息科学系 1 8 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (8)
同被引文献  (17)
二级引证文献  (5)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(4)
  • 引证文献(2)
  • 二级引证文献(2)
2018(6)
  • 引证文献(4)
  • 二级引证文献(2)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像超分辨
支持向量回归
稀疏表示
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子技术
月刊
1000-0755
31-1323/TN
大16开
上海市长宁区泉口路274号
4-141
1963
chi
出版文献量(篇)
5480
总下载数(次)
19
总被引数(次)
22245
论文1v1指导