基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了实现对具有不同光照、姿势和噪声的人脸进行识别并提高识别精度,设计了一种基于离散小波变换和最小二乘支持向量机的人脸识别方法.首先,采用二维离散小波变换对人脸图像进行压缩和降噪,以提取低频特征信息分量,然后采用快速独立成分分析法ICA对经过离散小波变换后的人脸低频分量进行特征提取,以进一步减少人脸特征向量维数.在获取图像特征向量的基础上,采用径向基函数作为核函数,将训练样本数据输入最小二乘支持向量机进行训练以获得最终的分类模型.在ORL数据库下采用MATLAB仿真工具进行仿真,实验结果表明,该方法能有效地实现对人脸识别,与其他方法相比具有较高的识别精度.
推荐文章
基于小波变换和支持向量机的人脸检测
人脸检测
小波变换
支持向量机
基于支持向量机的人脸识别研究
人脸识别
支持向量机
离散小波变换
基于二维Gabor小波和支持向量机的人脸识别
人脸识别
小波特征
主成分分析
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于离散小波变换和ICA支持向量机的人脸识别
来源期刊 电视技术 学科 工学
关键词 人脸识别 离散小波变换 独立成分分析 核函数 支持向量机
年,卷(期) 2014,(11) 所属期刊栏目 视频应用与工程
研究方向 页码范围 183-186
页数 4页 分类号 TP391
字数 2397字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 祝加雄 乐山师范学院物理与电子工程学院 22 38 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (69)
共引文献  (72)
参考文献  (10)
节点文献
引证文献  (4)
同被引文献  (16)
二级引证文献  (1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(10)
  • 参考文献(0)
  • 二级参考文献(10)
2006(12)
  • 参考文献(1)
  • 二级参考文献(11)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(8)
  • 参考文献(1)
  • 二级参考文献(7)
2010(8)
  • 参考文献(1)
  • 二级参考文献(7)
2011(5)
  • 参考文献(4)
  • 二级参考文献(1)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
人脸识别
离散小波变换
独立成分分析
核函数
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电视技术
月刊
1002-8692
11-2123/TN
大16开
北京市朝阳区酒仙桥北路乙7号(北京743信箱杂志社)
2-354
1977
chi
出版文献量(篇)
12294
总下载数(次)
21
总被引数(次)
42632
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导