基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
A mathematical model of HIV transmission dynamics is proposed and analysed. The population is partitioned into five compartments of susceptible S(t), Infected I(t), Removed R(t), Prevented U(t) and the Controlled W(t). Each of the compartments comprises of cohort of individuals. Five systems of nonlinear equations are derived to represent each of the compartments. The general stability of the disease free equilibrium (DFE) and the endemic equilibrium states of the linearized model are established using the linear stability analysis (Routh-Hurwitz) method which is found to be locally asymptotically stable when the infected individuals receive ART and use the condom. The reproduction number is also derived using the idea of Diekmann and is found to be strictly less than one. This means that the epidemic will die out.
推荐文章
Snowball Earth at low solar luminosity prevented by the ocean–atmosphere coupling
Faint Young Sun paradox
Carbon dioxide
Earth system
Siderite
Zircon saturation model in silicate melts: a review and update
Zircon
Zircon saturation
Model
Silicate melt
Mafic to silicic melts
Peraluminous to peralkaline compositions
Igneous rocks
Thermometer
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Global Stability Analysis of a Susceptible-Infected-Removed-Prevented-Controlled Epidemic Model
来源期刊 应用数学(英文) 学科 数学
关键词 EPIDEMIC Model Stability ANALYSIS HIV/AIDS Disease Free EQUILIBRIUM Points
年,卷(期) 2014,(10) 所属期刊栏目
研究方向 页码范围 1393-1399
页数 7页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
EPIDEMIC
Model
Stability
ANALYSIS
HIV/AIDS
Disease
Free
EQUILIBRIUM
Points
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学(英文)
月刊
2152-7385
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1878
总下载数(次)
0
总被引数(次)
0
论文1v1指导