作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本研究立足于朝阳地区1970-2010年的降水资料,利用MATLAB平台运用小波神经网络降水预测模型对朝阳地区降水量进行预测研究,并将该结果分别与真实值、BP神经网络预测结果对比分析,结果发现:基于小波神经网络的降水量预测模型取得了较高的预测精度,弥补了神经网络预测模型的缺点,减少了迭代次数,能够客观的反应朝阳地区降水情况且方法直观,为朝阳地区的降水量预测提供了较为有效的方法.
推荐文章
基于小波神经网络模型的含沙量预测研究
小波函数
BP神经网络
含沙量
基于小波神经网络的网络流量预测研究
小波神经网络
网络流量
预测研究
训练样本
基于小波神经网络的机械故障预测
小波网络
机械故障
预测
基于小波神经网络的开关磁阻发电机故障预测模型研究
MATLAB/simulink
小波神经网络
故障预测
仿真
开关磁阻发电机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波神经网络的朝阳降水预测模型研究
来源期刊 东北水利水电 学科 工学
关键词 降水预测 小波神经网络 BP神经网络
年,卷(期) 2014,(6) 所属期刊栏目 水文水资源
研究方向 页码范围 27-29
页数 3页 分类号 TV125
字数 2197字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 寇尔丹 2 6 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (58)
共引文献  (157)
参考文献  (8)
节点文献
引证文献  (1)
同被引文献  (3)
二级引证文献  (0)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(3)
  • 参考文献(0)
  • 二级参考文献(3)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(2)
  • 参考文献(1)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(4)
  • 参考文献(0)
  • 二级参考文献(4)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(6)
  • 参考文献(0)
  • 二级参考文献(6)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(5)
  • 参考文献(1)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(6)
  • 参考文献(1)
  • 二级参考文献(5)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
降水预测
小波神经网络
BP神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
东北水利水电
月刊
1002-0624
22-1097/TV
大16开
长春市解放大路4188号
1983
chi
出版文献量(篇)
7131
总下载数(次)
10
总被引数(次)
13617
论文1v1指导