作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高网络流量的预测精度,针对极限学习机的训练样本选择问题,提出一种基于合理遗忘选择训练样本的网络流量预测模型(SF-ELM)。首先通过引入遗忘因子减弱旧训练样本对预测结果的影响,合理对训练样本进行在线更新;然后以泛化能力作为评价准则,选择性更新极限学习机输出权值;最后进行仿真分析。结果表明,SF-ELM的网络流量学习速度快于对比模型,获得了更加理想的网络流量预测效果,更适于实时性要求高的网络流量在线预测。
推荐文章
模型参数联合求解的网络流量混沌预测
网络流量
混沌理论
最小二乘支持向量机
径向基核函数
参数优化
合理遗忘选择训练样本的煤矿瓦斯涌出量预测
煤矿瓦斯涌出量
最小二乘支持向量机
仿真实验
预测精度
基于PSO-Elman模型的网络流量预测
相空间重构
粒子群算法
Elman神经网络
混沌时间序列
网络流量预测
参数优化
最优训练样本子集的 LSSVM 网络流量预测
网络流量
最小二乘支持向量机
模糊均值聚类
密度方法
预测精度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于合理遗忘选择训练样本的网络流量预测模型
来源期刊 计算机应用与软件 学科 工学
关键词 网络流量 时间序列 极限学习机 神经网络
年,卷(期) 2014,(10) 所属期刊栏目 网络与通信
研究方向 页码范围 120-123,175
页数 5页 分类号 TP391
字数 4183字 语种 中文
DOI 10.3969/j.issn.1000-386x.2014.10.028
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 莫闯 贵州师范学院教育信息网络中心 6 8 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (47)
共引文献  (126)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(6)
  • 参考文献(2)
  • 二级参考文献(4)
2009(11)
  • 参考文献(3)
  • 二级参考文献(8)
2010(9)
  • 参考文献(1)
  • 二级参考文献(8)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
网络流量
时间序列
极限学习机
神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导