原文服务方: 计算机测量与控制       
摘要:
在基于数据驱动的涡扇发动机地面定检系统中,为了提高航空发动机的故障诊断性能,提出一种改进的基于云神经网络的航空发动机故障诊断方法;首先,把云模型和BP神经网络相结合,得到进行故障诊断与检测的模型结构,然后用余弦式改进自适应遗传算法并对网络模型进行优化,得到改进后的云神经网络模型;通过对实际数据的实例仿真表明,该方法对于航空发动机地面稳态的故障诊断是可行的,并且提高了故障诊断系统的诊断精度.
推荐文章
基于改进的LVQ神经网络的发动机故障诊断
改进的LVQ神经网络
发动机
故障诊断
神经元
基于改进的BP神经网络的柴油发动机故障诊断
柴油发动机
高压共轨
BP神经网络
LM算法
电控系统
故障诊断
基于粒子群神经网络的发动机故障诊断
粒子群
神经网络
汽车发动机
故障诊断
基于PNN神经网络的电控发动机故障诊断
PNN神经网络
发动机
电控系统
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于一种改进的云神经网络涡扇发动机故障诊断
来源期刊 计算机测量与控制 学科
关键词 航空发动机 云模型 云神经网络 自适应遗传算法 故障诊断
年,卷(期) 2014,(4) 所属期刊栏目 自动化测试技术
研究方向 页码范围 988-990
页数 3页 分类号 TP301.6
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李宗帅 中国民航大学航空自动化学院 59 230 8.0 11.0
2 王修岩 中国民航大学航空自动化学院 49 235 9.0 12.0
3 谷新铭 中国民航大学航空自动化学院 3 6 2.0 2.0
4 高铭阳 北京航空航天大学仪器科学与光电工程学院 2 19 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (27)
参考文献  (5)
节点文献
引证文献  (2)
同被引文献  (12)
二级引证文献  (4)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
航空发动机
云模型
云神经网络
自适应遗传算法
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导