作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对评分数据稀疏和单一评分相似性计算不准确导致推荐质量不高的问题,提出一种面向用户兴趣密度分布的协同过滤推荐算法。在计算项目类别相似度的同时,引入类别的信息熵以确定项目之间距离,在此基础上采用 Parzen 窗估计方法获取用户在整个项目空间上的兴趣密度分布,最后结合用户属性差异性和兴趣密度之间相对熵以确定目标用户的最近邻居用户集。实验结果表明,该算法在避免数据填充所引入误差的同时,有效提升数据稀疏情况下的推荐质量。
推荐文章
基于用户兴趣模型聚类的协同过滤推荐算法
协同过滤
推荐系统
用户兴趣模型
推荐算法
基于用户引力的协同过滤推荐算法
推荐算法
协同过滤推荐
万有引力定律
社会标签
基于密度的动态协同过滤图书推荐算法
协同过滤
个性化推荐
动态
相似度
基于用户历史行为的协同过滤推荐算法
数据挖掘
协同过滤
用户偏好
项目相似度
个性化推荐
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向用户兴趣密度分布的协同过滤推荐算法
来源期刊 计算机系统应用 学科
关键词 协同过滤 Parzen窗估计 相对熵 用户属性
年,卷(期) 2014,(12) 所属期刊栏目 软件技术?算法
研究方向 页码范围 115-119
页数 5页 分类号
字数 4473字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 毕孝儒 四川外国语大学重庆南方翻译学院管理学院 34 35 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (239)
参考文献  (6)
节点文献
引证文献  (1)
同被引文献  (11)
二级引证文献  (6)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
协同过滤
Parzen窗估计
相对熵
用户属性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
论文1v1指导