为进一步提高水印算法的抗攻击性能,提出了基于支持向量机(Support Vector Machine,SVM)与奇异值分解(Singular Value Decomposition,SVD)的盲水印算法.首先对宿主图像进行DWT变换,将低频子带分成互不重叠的子块;然后利用SVM建立子块的局部相关性模型,根据模型预测结果与对应位置的低频系数值的大小关系产生特征序列,该序列与水印进行异或运算产生特征水印序列,将特征水印序列通过奇偶量化规则嵌入原始图像小波低频子带对应子块的最大奇异值.实验结果表明,该算法不仅具有较好的不可感知性,而且具有较强的抗攻击能力.