基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通过对变压器油中溶解气体进行分析,可以及早的发现变压器的故障。为了全面地反映变压器内部故障与特征气体之间的关系,提出采用5种特征气体浓度比值共计15组作为特征预输入量,并采用基因选择算法对15个特征量进行筛选,将筛选后特征量作为支持向量机模型输入。在SVM模型中,采用模拟退火算法对SVM的参数进行优化,给出其GUI界面。最后,通过数据验证基于RFE-SA-SVM模型故障诊断率要高于单一模型。
推荐文章
用于变压器DGA故障诊断的改进PSO优化SVM算法研究
变压器
故障诊断
DGA
模拟退火算法
粒子群优化算法
SVM
基于RF特征优选的WOA-SVM变压器故障诊断
变压器
故障诊断
特征优选
随机森林
鲸鱼优化算法
基于ACS⁃SA文化基因算法的BP神经网络变压器故障诊断
BP神经网络
文化基因算法
变压器
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于RFE-SA-SVM的变压器故障诊断
来源期刊 电测与仪表 学科 工学
关键词 特征选择 基因选择算法 支持向量机 故障诊断
年,卷(期) 2014,(12) 所属期刊栏目 理论与实验研究
研究方向 页码范围 50-55
页数 6页 分类号 TM411
字数 2791字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵峰 兰州交通大学自动化与电气工程学院 96 515 13.0 18.0
2 李育恒 兰州交通大学自动化与电气工程学院 2 9 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (78)
共引文献  (59)
参考文献  (14)
节点文献
引证文献  (1)
同被引文献  (9)
二级引证文献  (2)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(8)
  • 参考文献(0)
  • 二级参考文献(8)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(12)
  • 参考文献(4)
  • 二级参考文献(8)
2008(14)
  • 参考文献(0)
  • 二级参考文献(14)
2009(9)
  • 参考文献(1)
  • 二级参考文献(8)
2010(15)
  • 参考文献(3)
  • 二级参考文献(12)
2011(5)
  • 参考文献(4)
  • 二级参考文献(1)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
特征选择
基因选择算法
支持向量机
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电测与仪表
半月刊
1001-1390
23-1202/TH
大16开
哈尔滨市松北区创新路2000号
14-43
1964
chi
出版文献量(篇)
7685
总下载数(次)
22
总被引数(次)
55393
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导