基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于电力负荷量是电力系统发展的基础,因此提高电力负荷量预测的准确性有利于电力系统的快速发展。本文利用粒子群算法优化参数的良好性能和灰色预测法适合预测不确定因素影响系统的优势,提出了灰色变异粒子群组合预测模型来预测电力负荷量,提高了电力负荷预测的精度,并通过实例对组合预测模型的预测精度和有效性进行了分析。结果表明,此组合预测模型的精度优于单一的灰色预测模型,且优于其他几种预测算法,该组合模型能很好地预测电力负荷量,为电力系统的决策和发展提供了可靠的科学数据。
推荐文章
基于RBFNN混合粒子群算法的电力负荷短期预测
电力负荷预测
径向基神经网络(RBFNN)
混合粒子群优化算法(HPSO)
基于粒子群的电力系统短期负荷预测
PSO
BP神经网络
适应度
迭代
模糊推理
灰色变异粒子群算法在公交客流量预测中的应用
灰色模型
变异粒子群算法
公交客流量
预测
粒子群算法在电力系统中的应用研究
粒子群算法
智能优化算法
人工生命
计算技术
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 灰色变异粒子群算法在电力负荷预测中的应用
来源期刊 计算机系统应用 学科
关键词 灰色模型 变异粒子群算法 电力负荷 预测
年,卷(期) 2014,(4) 所属期刊栏目 软件技术?算法
研究方向 页码范围 173-177
页数 5页 分类号
字数 3987字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 梁宽裕 2 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (62)
共引文献  (331)
参考文献  (10)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(11)
  • 参考文献(1)
  • 二级参考文献(10)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(10)
  • 参考文献(1)
  • 二级参考文献(9)
2009(6)
  • 参考文献(2)
  • 二级参考文献(4)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
灰色模型
变异粒子群算法
电力负荷
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
论文1v1指导