基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对粒子群算法(PSO)收敛速度慢、求解精度不高以及易陷入局部最优的缺点,结合云遗传算法(CGA)和粒子群优化算法,提出一种新型的双种群混合算法(CGA-PSO)。将整个种群平均分成2个子群,分别采用云遗传算法和加入自调整惯性权值策略的粒子群优化算法完成进化。通过引入一种新型的信息交流机制:两子群子代间信息交流以及子代与父代间信息交流,共享最优个体,淘汰最劣个体,实现共同进化,适时对粒子群适应度较差的个体进行云变异操作,该操作是基于云模型的随机性和稳定性,利用全局最优位置和最劣位置实现对部分粒子位置的变异过程。对5个经典测试函数进行测试,并与CGA和PSO算法及其优化算法进行比较,结果表明,CGA-PSO算法具有较高的搜索效率、求解精度和较快的收敛速度,鲁棒性也较强。
推荐文章
基于分组的PSO与DE的混合算法
惯性权重
粒子群优化算法
早熟收敛
差分进化
边界变异
基于差分进化算法和NSGA-Ⅱ的混合算法
改进的DE-NSGAⅡ算法
拉丁超立方体抽样技术
剪枝方法
参数自适应策略
最优化问题全局寻优的PSO-BFGS混合算法
全局优化
混合算法
粒子群优化算法
BFGS方法
基于改进PSO和DE的混合算法
粒子群优化算法
差分进化算法
混合算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于CGA和PSO的双种群混合算法
来源期刊 计算机工程 学科 工学
关键词 云遗传算法 粒子群优化算法 双种群混合算法 自调整惯性权值策略 信息交流机制 云变异操作
年,卷(期) 2014,(7) 所属期刊栏目 人工智能及识别技术
研究方向 页码范围 156-161
页数 6页 分类号 TP18
字数 6554字 语种 中文
DOI 10.3969/j.issn.1000-3428.2014.07.031
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王永贵 辽宁工程技术大学软件学院 47 293 10.0 15.0
2 刘宪国 辽宁工程技术大学软件学院 6 47 4.0 6.0
3 林琳 辽宁工程技术大学软件学院 12 38 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (62)
共引文献  (286)
参考文献  (10)
节点文献
引证文献  (6)
同被引文献  (29)
二级引证文献  (6)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(8)
  • 参考文献(0)
  • 二级参考文献(8)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(13)
  • 参考文献(1)
  • 二级参考文献(12)
2008(3)
  • 参考文献(2)
  • 二级参考文献(1)
2009(4)
  • 参考文献(2)
  • 二级参考文献(2)
2010(7)
  • 参考文献(2)
  • 二级参考文献(5)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(3)
  • 引证文献(2)
  • 二级引证文献(1)
2019(4)
  • 引证文献(1)
  • 二级引证文献(3)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
云遗传算法
粒子群优化算法
双种群混合算法
自调整惯性权值策略
信息交流机制
云变异操作
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
论文1v1指导