基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
主要研究了基于图像处理技术的黄瓜叶部病害识别诊断系统。该系统主要包括图像预处理模块、图像分割模块、图像特征提取模块及图像模式识别模块等。同时,对关键模块中的复杂背景下的图像分割及支持向量机的模式识别方式作了比较详细的介绍。实践表明,该系统能方便、快速地识别黄瓜各类病害,具有较好地推广性和应用价值。
推荐文章
基于Android的苹果叶部病害识别系统设计
Android
苹果病害
图像识别
Canny算子
支持向量机
基于图像处理和模糊识别技术的烟叶病害识别研究
烟叶病害
自适应中值滤波
快速模糊C-均值聚类
模糊识别
基于图像识别的玉米叶部病害诊断研究
玉米叶部病害
颜色特征
形状特征
图像分割
区域标记
基于量子神经网络和组合特征参数的玉米叶部病害识别
玉米病害
组合特征参数
量子神经网络
病害识别率
识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于图像处理技术的黄瓜叶部病害识别诊断系统
来源期刊 农机化研究 学科 工学
关键词 图像处理技术 黄瓜 病害 诊断系统
年,卷(期) 2014,(9) 所属期刊栏目 新技术应用
研究方向 页码范围 213-215,225
页数 4页 分类号 TP391.41
字数 2895字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张芳 51 244 9.0 12.0
2 付立思 42 355 11.0 18.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (126)
参考文献  (5)
节点文献
引证文献  (13)
同被引文献  (44)
二级引证文献  (15)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(3)
  • 参考文献(2)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(10)
  • 引证文献(7)
  • 二级引证文献(3)
2019(8)
  • 引证文献(1)
  • 二级引证文献(7)
2020(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
图像处理技术
黄瓜
病害
诊断系统
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
农机化研究
月刊
1003-188X
23-1233/S
大16开
黑龙江哈尔滨市哈平路156号
14-324
1979
chi
出版文献量(篇)
14318
总下载数(次)
39
论文1v1指导