原文服务方: 计算机测量与控制       
摘要:
针对车牌识别预处理中的图像去噪问题,提出一种自适应耦合偏微分方程(PDE)去噪模型;该模型在各项异性扩散模型的基础上,构造一种新的去除椒盐噪声的扩散项,能够根据噪声图像特点自适应控制扩散速度,有效抑制椒盐噪声,并将新的扩散项与各向异性扩散模型进行耦合,并提出一种新的耦合系数计算方法,根据图像信息自适应计算耦合系数,使得新模型能够在新的扩散项和各项异性扩散模型间自适应转换,有效去除车牌图像中的混合噪声;为了抑制去噪引起的图像边缘模糊问题,引入振动滤波进行逆滤波,增强图像的边缘信息;实验结果表明,自适应耦合PDE模型能更有效去除车牌图像中的混合噪声,保护图像的边缘信息,提高图像的峰值信噪比(PSNR);去噪后的图像更有利于后续的字符分割与识别,有效提高车牌图像的识别准确率.
推荐文章
基于区域分割的混合PDE模型遥感图像去噪
遥感图像
区域分割
偏微分方程
去噪
基于Ridgelet变换的自适应软硬折衷图像去噪算法
Wavelet变换
Radon变换
Ridgelet变换
图像去噪
基于边缘检测的NSCT自适应阈值图像去噪
非子采样Contourlet变换
图像去噪
自适应阈值
边缘检测
基于比率距离的自适应超声图像去噪方法
图像处理
超声图像
比率距离
去噪算法
瑞利分布
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于自适应耦合PDE模型的车牌图像去噪研究
来源期刊 计算机测量与控制 学科
关键词 偏微分方程(PDE) 车牌识别 各向异性扩散 自适应耦合 振动滤波
年,卷(期) 2014,(8) 所属期刊栏目 算法、设计与应用
研究方向 页码范围 2592-2594
页数 3页 分类号 TP391.41
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 程东旭 中原工学院理学院 18 85 5.0 8.0
2 杨艳 中原工学院电子信息学院 31 161 6.0 12.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (36)
参考文献  (13)
节点文献
引证文献  (4)
同被引文献  (9)
二级引证文献  (3)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(3)
  • 参考文献(0)
  • 二级参考文献(3)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(3)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(5)
  • 参考文献(5)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(4)
  • 引证文献(2)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
偏微分方程(PDE)
车牌识别
各向异性扩散
自适应耦合
振动滤波
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导