作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了准确预测矿井瓦斯涌出量,将灰色理论与Elman神经网络模型结合,建立矿井瓦斯涌出量预测模型。灰色系统能较好地预测变化的趋势,而Elman神经网络具有动态特性好、逼近速度快、精度高等特点。对于煤矿生产中瓦斯涌出量的预测,两者结合能够发挥各自的优势,以某煤矿矿井为例,影响瓦斯涌出量的因素为预测因子建立灰色理论与Elman神经网络融合的预测模型。结果表明,灰色Elman神经网络模型优于传统灰色预测模型,提高了预测精度,达到了很好的预测效果。
推荐文章
基于灰色理论和人工神经网络的瓦斯涌出量预测
灰色理论
神经网络
瓦斯涌出量
预测
矿井瓦斯涌出量预测研究新方法
非线性特征
灰色理论
遗传神经网络
瓦斯涌出量
基于径向基的瓦斯涌出量灰色预测模型
瓦斯涌出量
灰色预测
RBF
预测精度
综采工作面的瓦斯涌出规律及涌出量的预测
综采工作面
瓦斯源
瓦斯预测
瓦斯涌出
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 灰色Elman神经网络的矿井瓦斯涌出量预测
来源期刊 计算机技术与发展 学科 工学
关键词 灰色 Elman神经网络 瓦斯涌出量 融合 预测
年,卷(期) 2014,(6) 所属期刊栏目 应用开发研究
研究方向 页码范围 236-238,242
页数 4页 分类号 TP183
字数 3210字 语种 中文
DOI 10.3969/j.issn.1673-629X.2014.06.059
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 贾花萍 渭南师范学院数学与信息科学学院 37 95 5.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (6)
共引文献  (30)
参考文献  (8)
节点文献
引证文献  (9)
同被引文献  (42)
二级引证文献  (9)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(4)
  • 引证文献(3)
  • 二级引证文献(1)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(5)
  • 引证文献(1)
  • 二级引证文献(4)
2020(3)
  • 引证文献(2)
  • 二级引证文献(1)
研究主题发展历程
节点文献
灰色
Elman神经网络
瓦斯涌出量
融合
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导