原文服务方: 现代电子技术       
摘要:
为了提高卡钻预测中卡钻类别判断的准确度,以青海地区地热勘探井实钻数据为基础,结合时间序列分析建模方法,提出了一种适合卡钻类别判断的方法。通过时序模型对未来钻井数据进行预测处理,运用Matlab软件对各个ARMA模型做功率谱估计,比较相邻两个ARMA模型的功率谱密度,计算各个参数的功率谱偏差值,进行数值仿真,当某一参数其功率谱偏差值出现明显异常时,则预判断这一时刻可能发生此参数对应类别的卡钻事故。引入多因素时序建模方法,运用SPSS软件做多因素模型,计算主要参数的预测区间,当预测值超出预测区间时,则可以判断发生对应类别的卡钻事故。最终证实,采用此方法能够实现对钻井过程中未来卡钻事故的类别判断,在实际钻井中有较高的可扩展性及应用价值。
推荐文章
ARMA建模在神经网络卡钻预测方法中的应用研究
卡钻
预测
时间序列
ARMA建模
BP神经网络
时间序列在循环卡钻预测中的应用研究
时间序列
循环卡钻
预测
ARMA建模
ARMA建模在神经网络卡钻预测方法中的应用研究
卡钻
预测
时间序列
ARMA建模
BP神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 时间序列建模在卡钻类别判断中的应用研究
来源期刊 现代电子技术 学科
关键词 时间序列 ARMA建模 卡钻 预测 类别判断
年,卷(期) 2014,(4) 所属期刊栏目 计算机应用技术 -- 科学计算与信息处理
研究方向 页码范围 5-7,12
页数 4页 分类号 TN911-34|TE28
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘光星 西安石油大学陕西省钻机控制技术重点实验室 23 69 4.0 7.0
2 翟坤 西安石油大学陕西省钻机控制技术重点实验室 5 8 2.0 2.0
3 陶宇龙 西安石油大学陕西省钻机控制技术重点实验室 2 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (17)
参考文献  (5)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(2)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
时间序列
ARMA建模
卡钻
预测
类别判断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导