原文服务方: 现代电子技术       
摘要:
目标跟踪是粒子滤波算法在处理非线性问题的一种典型应用,但由于在线处理能力或传输条件的限制,实际应用中往往无法对多个传感器数据同时处理。据此,给出了一种基于多传感器选优的粒子滤波算法。假设每个时刻可以处理一个测量数据,该算法先采用加权的概率密度函数来评价每个传感器获得的测量值,并用粒子滤波对概率密度函数的加权进行实时更新,基于最大熵标准来选取最优测量数据进行处理。同时,最大熵标准保证了最优似然函数分布最宽,从而缓解粒子衰竭问题。通过数值仿真实验证明,该算法可以选择最优观测数据进行处理,有效降低多传感器测量中粒子滤波在线实时处理性能的要求,也较好地缓解了粒子滤波的“衰竭”问题。
推荐文章
卡尔曼滤波算法在多传感器融合技术中的应用
数据融合
加权融合估计
非线性卡尔曼滤波
粒子滤波在无线传感器网络目标追踪中的应用
无线传感器网络
粒子滤波
目标追踪
基于粒子滤波和检测信息的多传感器融合跟踪
粒子滤波器
多传感器
信息融合
检测和跟踪
目标跟踪
多传感器交叉提示技术在传感器联盟中的应用
传感器联盟
动态控制
多传感交叉提示
目标跟踪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 粒子滤波算法在多传感器测量中的应用
来源期刊 现代电子技术 学科
关键词 粒子滤波 最大熵 传感器选择 粒子衰竭
年,卷(期) 2014,(1) 所属期刊栏目 通信与信息技术 -- 信号处理
研究方向 页码范围 24-26,30
页数 4页 分类号 TN911.6-34
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 谭博 西北工业大学数据处理中心 33 137 7.0 9.0
2 裴承鸣 西北工业大学数据处理中心 39 226 9.0 13.0
3 郑华 西北工业大学数据处理中心 18 67 3.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (10)
参考文献  (4)
节点文献
引证文献  (2)
同被引文献  (12)
二级引证文献  (1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
粒子滤波
最大熵
传感器选择
粒子衰竭
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导