基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
特定类的思想是将传统的多类特征提取和识别任务转化为多个两类问题,由此产生了类不平衡问题,影响最优鉴别特征的提取。为了解决该问题,文中提出了一种主动学习平衡类鉴别分析( ALCBD)方法。对于每个特定类,ALCBD从其对应的大类中选取它的部分近邻样本构成特定类的近邻样本集,接着将这个近邻样本集划分成与特定类相同样本数的多个子集,然后根据主动学习的思想挑选最优子集与特定类结合成为新样本集,最后用传统的线性鉴别分析( LDA)方法得到鉴别向量。基于USPS和Honda/UCSD数据库的实验表明ALCBD方法能够有效地解决类不平衡问题,并改善了识别性能。
推荐文章
基于主动学习策略的半监督聚类算法研究
K-均值算法
主动学习策略
半监督学习
聚类
基于AdaBoost的类不平衡学习算法
机器学习
类不平衡学习
集成学习
SMOTE
数据清理技术
基于模糊核聚类和主动学习的异常检测方法
异常检测
模糊核聚类
主动学习
日志解析
聚类分析
性能对比
核化正交平衡类鉴别分析
类不平衡
鉴别特征
核方法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于主动学习的平衡类鉴别分析
来源期刊 计算机技术与发展 学科 工学
关键词 类不平衡 鉴别特征 主动学习 鉴别分析
年,卷(期) 2014,(6) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 95-98
页数 4页 分类号 TP301
字数 3203字 语种 中文
DOI 10.3969/j.issn.1673-629X.2014.06.024
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 荆晓远 南京邮电大学自动化学院 52 99 5.0 6.0
2 李敏 南京邮电大学自动化学院 34 36 3.0 4.0
3 姚永芳 南京邮电大学自动化学院 16 20 2.0 2.0
4 黄明晓 南京邮电大学自动化学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (18)
参考文献  (9)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(1)
  • 二级参考文献(3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
类不平衡
鉴别特征
主动学习
鉴别分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导