原文服务方: 现代电子技术       
摘要:
磁共振脑图像的是医学诊断中的一种重要的手段,在此主要研究磁共振脑图像的组织分类。分类以脑图像各组织的纹理特征为依据。在试验过程中采用区分度较高的特征值,组成特征向量,作为支持向量机的输入,用改进的支持向量机进行分类。在特征向量数据优化和支持向量机参数寻优的条件下,可以取得较好的分类效果。
推荐文章
基于复小波和支持向量机的纹理分类法
小波变换
二元树复小波变换
特征提取
支持向量机
纹理分类
基于支持向量机的路面图像分类方法
路面分类
颜色特征
纹理特征
模糊支持向量机
基于小波变换和支持向量机的彩色纹理识别
纹理
彩色空间
小波变换(WT)
支持向量机(SVM)
纹理识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于纹理特征和支持向量机的磁共振脑图像组织分类
来源期刊 现代电子技术 学科
关键词 纹理特征 支持向量机 磁共振脑图像 参数寻优
年,卷(期) 2014,(8) 所属期刊栏目 计算机应用技术 -- 图形图像处理
研究方向 页码范围 135-137
页数 3页 分类号 TN964-34
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 董朝旭 中国海洋大学电子系 1 1 1.0 1.0
2 年瑞 中国海洋大学电子系 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (125)
参考文献  (8)
节点文献
引证文献  (1)
同被引文献  (5)
二级引证文献  (0)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
纹理特征
支持向量机
磁共振脑图像
参数寻优
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
总被引数(次)
135074
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导