为实现柑橘黄龙病的早期、快速确诊,有效阻止病害蔓延,达到早期防治、保障柑橘生产的目的,该文研究基于高光谱成像的柑橘黄龙病早期无损检测及病情分级,并对多种预处理方法的建模结果进行探讨。试验获取370~1000 nm健康、不同染病程度及缺锌共5类柑橘叶片的高光谱图像,用遥感图像处理平台(environment for visualizing images,ENVI)得到各类样本感兴趣区域的光谱反射率平均值。运用一阶微分、移动窗口拟和多项式平滑(savitzky-golay,SG)进行数据处理,结合偏最小二乘判别分析(partial least squares-discriminate analysis, PLS-DA)构建黄龙病的早期鉴别及病情分级模型。结果表明:建立的3个判别模型,验证集相关系数均不低于0.9548。其中,经SG平滑及一阶微分预处理所建立的模型分类效果最佳,总体预测准确率达96.4%,预测均方根误差0.1344。该研究为柑橘病害早期诊断和预警提供了新方法,也为黄龙病病害程度遥感监测提供了基础。