原文服务方: 计算机测量与控制       
摘要:
如何进行更好地资源调度一直都是云计算研究的热点,在云计算资源算法中引入布谷鸟算法,针对布谷鸟算法中出现的收敛速度快,容易局部震荡等现象,首先引入高斯变异算子来处理每一个阶段中的鸟窝最佳位置的选择,然后通过自适应动态因子来调整不同阶段中的鸟窝位置的选择,使得改进后的算法收敛精度提高,通过适应度函数的平衡以及遗传算法中的3种操作,使得该算法能够有效的提高云计算环境下的资源分配效率,降低了网络消耗;在Cloudsim平台仿真实验中,通过3个方面的比较,该算法在性能上、资源调度效率和任务调度方面都有很大改进,有效提高了云计算系统的资源调度能力.
推荐文章
云模型的布谷鸟搜索算法
布谷鸟搜索算法
云模型
云模型的布谷鸟搜索算法
基于混沌序列的布谷鸟算法改进
布谷鸟算法
Lévy飞行
混沌序列
收敛性能
基于布谷鸟搜索改进的聚类算法
聚类
k-means算法
布谷鸟搜索算法
收敛速度
全局最优
基于克隆布谷鸟算法的资源均衡优化
克隆布谷鸟算法
Levy变异
非均匀变异
资源均衡优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进的布谷鸟算法在云计算资源的研究
来源期刊 计算机测量与控制 学科
关键词 高斯变异 自适应 适应度函数 布谷鸟算法 云计算
年,卷(期) 2014,(12) 所属期刊栏目 算法、设计与应用
研究方向 页码范围 4150-4153
页数 4页 分类号 TP18
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 丁善婷 18 49 4.0 6.0
3 叶华乔 13 47 5.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (1106)
参考文献  (5)
节点文献
引证文献  (5)
同被引文献  (17)
二级引证文献  (19)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(6)
  • 引证文献(4)
  • 二级引证文献(2)
2018(4)
  • 引证文献(0)
  • 二级引证文献(4)
2019(10)
  • 引证文献(0)
  • 二级引证文献(10)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
高斯变异
自适应
适应度函数
布谷鸟算法
云计算
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导