原文服务方: 计算机测量与控制       
摘要:
针对现有支持向量机(support vector machine,SVM)多分类方法在网络故障诊断中识别精度较低的问题,提出一种基于二叉树结构和模型二重扰动的SVM集成学习算法;通过集成学习思想提高网络故障诊断的精度;在集成过程中对二叉树结构和核参数进行扰动,加大个体分类器的差异度,提升了诊断模型的泛化性;在实际网络中的诊断实验表明,所提的方法较二叉树等其它SVM多分类方法具有更高的诊断精度.
推荐文章
基于SVM的径向基网络故障诊断方法
支持向量机
径向基网络
故障诊断
基于支持向量机的混合电路故障诊断
支持向量机
混合电路
故障诊断
动态电流
基于遗传算法和支持向量机的故障诊断方法
最小二乘支持向量机
自适应遗传算法
机载电气盒
故障诊断
基于支持向量机的信息融合模拟电路故障诊断方法研究
信息融合
支持向量机
模拟电路故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量机集成学习的网络故障诊断方法
来源期刊 计算机测量与控制 学科
关键词 支持向量机 二重扰动 集成学习 故障诊断
年,卷(期) 2014,(12) 所属期刊栏目 自动化测试技术
研究方向 页码范围 3906-3908,3911
页数 4页 分类号 TP393
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李正明 江苏大学电气信息工程学院 157 1549 22.0 31.0
2 单桂军 镇江高等专科学校实验实训中心 32 64 4.0 6.0
3 陈江 镇江高等专科学校实验实训中心 12 10 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (26)
参考文献  (5)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
支持向量机
二重扰动
集成学习
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导