基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对多目标分布估计算法全局收敛性较弱的缺陷,提出了一种自适应混合多目标分布估计进化算法。其基本思想是:在多目标分布估计算法中引入全局收敛性较强的差分进化算法,当函数变化率较大时,用分布估计算法产生新种群;当函数变化率较小即算法可能陷入局部收敛时,用差分进化算法产生新种群。理论分析和数值实验结果表明,这种混合算法不仅具有良好的全局收敛性,而且解的分布性和均匀性较没有考虑目标函数变化率的混合多目标分布估计算法也有了一定程度的提高。
推荐文章
基于强度Pareto的自适应多目标差分进化算法
多目标优化
差分进化算法
强度Pareto
基于策略自适应的多目标差分进化算法及其应用
差分进化
多目标优化
自适应
海铁联运
能耗优化
多种群联合的多目标进化自适应阈值图像分割算法
图像分割
多目标进化
多种群联合
自适应多阈值
自调节交叉和变异
和声搜索—分布估计混合算法求解多目标优化问题
多目标优化
和声搜索
分布估计
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 自适应混合多目标分布估计进化算法
来源期刊 计算机工程与应用 学科 工学
关键词 多目标优化 分布估计算法 差分进化算法 自适应 函数变化率
年,卷(期) 2014,(5) 所属期刊栏目 博士论坛
研究方向 页码范围 46-50,207
页数 6页 分类号 TP301.6
字数 4474字 语种 中文
DOI 10.3778/j.issn.1002-8331.1308-0323
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 许峰 安徽理工大学理学院 143 328 9.0 12.0
2 梁玉洁 安徽理工大学计算机科学与工程学院 1 14 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (295)
参考文献  (4)
节点文献
引证文献  (14)
同被引文献  (53)
二级引证文献  (21)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(4)
  • 引证文献(4)
  • 二级引证文献(0)
2016(4)
  • 引证文献(3)
  • 二级引证文献(1)
2017(5)
  • 引证文献(1)
  • 二级引证文献(4)
2018(11)
  • 引证文献(3)
  • 二级引证文献(8)
2019(7)
  • 引证文献(2)
  • 二级引证文献(5)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
多目标优化
分布估计算法
差分进化算法
自适应
函数变化率
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导