基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文在传统词袋模型的基础上,结合人的视觉特性,提出了一种基于视觉显著度与词袋模型的图像分类方法。算法首先计算图像的视觉显著度,然后根据图像的视觉显著度对图像计算视觉单词的加权直方图,然后使用视觉单词的加权直方图表示图像。通过在Caltech 101数据库进行实验,验证了本文方法的有效性,实验结果表明,该方法能够大幅度提高图像分类的性能。
推荐文章
单尺度词袋模型图像分类方法
图像分类
单尺度SsIFT
视觉单词
词袋模型
一种基于优化“词袋”模型的物体识别方法
物体识别
“词袋”模型
特征融合
K-means++聚类
支撑向量机
基于词袋模型的林业业务图像分类
森林计测学
林业业务图像
图像分类
特征提取
BoW模型
支持向量机
一种基于图像特征的图像分类方法
图像特征
图像分类
颜色
纹理
边缘特征
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于视觉显著度词袋模型的图像分类方法
来源期刊 数字技术与应用 学科 工学
关键词 词袋模型 视觉词典 图像分类 视觉显著度
年,卷(期) 2014,(7) 所属期刊栏目 应用研究
研究方向 页码范围 77-79
页数 3页 分类号 TP391.4
字数 3122字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 严斌宇 四川大学电子信息学院 33 246 10.0 15.0
2 杨晓敏 四川大学电子信息学院 77 789 17.0 24.0
3 宋亚东 四川大学电子信息学院 2 1 1.0 1.0
4 王潘 四川大学电子信息学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (67)
共引文献  (83)
参考文献  (10)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1964(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(15)
  • 参考文献(3)
  • 二级参考文献(12)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(11)
  • 参考文献(2)
  • 二级参考文献(9)
2013(7)
  • 参考文献(2)
  • 二级参考文献(5)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
词袋模型
视觉词典
图像分类
视觉显著度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数字技术与应用
月刊
1007-9416
12-1369/TN
16开
天津市
6-251
1983
chi
出版文献量(篇)
20434
总下载数(次)
106
总被引数(次)
35701
相关基金
高等学校博士学科点专项科研基金
英文译名:
官方网址:http://std.nankai.edu.cn/kyjh-bsd/1.htm
项目类型:面上课题
学科类型:
论文1v1指导