作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
简要介绍了基于统计学习理论的支持向量机回归(SVR)原理,针对边坡稳定性影响因素的复杂性,结合实例运用SVR技术构建了铀矿边坡稳定性的支持向量回归预报模型,并利用网格搜索与留一交叉验证方法(LOOCV)优化模型参数。研究表明,在小样本条件下, SVR预报模型对训练样本的计算值与实测值平均相对误差(MRE)为0.045967%,相对均方误差(MSRE)为0.046371%,拟合值(VOF)为1.999995765,相关系数(R)为0.9984,均比人工神经网络方法的相应指标值要小,说明支持向量回归方法是一种科学有效的矿山边坡稳定性的分析方法。
推荐文章
进化-最小二乘支持向量机的边坡稳定性估计
边坡稳定
最小二乘支持向量机
遗传算法
参数选择
用ANSYS分析边坡稳定性
边坡稳定性
有限元折减法
ANSYS
屈服准则
震裂边坡稳定性极限分析
地震
开裂边坡
极限分析
稳定系数
土质边坡稳定性技术分析探讨
土质边坡
稳定性
技术分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 铀矿边坡稳定性的支持向量回归分析
来源期刊 科技风 学科
关键词 铀矿边坡 支持向量机 边坡安全 预测模型 神经网络
年,卷(期) 2014,(6) 所属期刊栏目 应用科技
研究方向 页码范围 131-134
页数 4页 分类号
字数 3858字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李冰清 东华理工大学理学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (58)
共引文献  (130)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(4)
  • 参考文献(0)
  • 二级参考文献(4)
1995(4)
  • 参考文献(1)
  • 二级参考文献(3)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(5)
  • 参考文献(1)
  • 二级参考文献(4)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(2)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(6)
  • 参考文献(3)
  • 二级参考文献(3)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
铀矿边坡
支持向量机
边坡安全
预测模型
神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科技风
旬刊
1671-7341
13-1322/N
16开
河北省石家庄市
1988
chi
出版文献量(篇)
77375
总下载数(次)
264
总被引数(次)
119910
论文1v1指导