基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对支持向量机( SVM)硬判定输出分类结果缺乏定量评价的问题,提出了一种多分类SVM后验概率建模的改进方法。通过引入D-S证据理论,得到多分类SVM在D-S证据理论识别框架下的基本概率分配,使样本在分类时同时具有定性解释和定量评价。接着,将多源信息送入SVM之后在决策级对多个SVM分类输出进行证据融合,以提高诊断精度。最后,将该方法应用于轴承故障的诊断中。结果表明,该方法能正确分类采用单源信息时所错分样本,降低识别的整体误差,显著提高故障诊断的准确性。
推荐文章
基于LS-SVM和D-S证据理论的轴承故障诊断
信息融合
滚动轴承故障诊断
LS-SVM
D-S证据理论
基于D-S证据理论信息融合的故障诊断方法
信息处理技术
证据理论
信息融合
故障诊断
决策规则
状态监测
基于D-S证据理论的齿轮箱故障诊断
D-S证据理论
BP神经网络
模糊识别
齿轮箱
基于灰色关联和D-S证据理论的感应电转子故障诊断
灰色关联
D-S证据理论
感应电机
转子故障诊断
决策级信息融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多分类支持向量机和D-S证据理论的轴承故障诊断
来源期刊 汽车工程 学科
关键词 故障诊断 支持向量机 后验概率 D-S证据理论 信息融合
年,卷(期) 2015,(1) 所属期刊栏目
研究方向 页码范围 114-119
页数 6页 分类号
字数 3772字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 肖云魁 军事交通学院汽车工程系 56 325 10.0 14.0
2 赵慧敏 军事交通学院汽车工程系 24 130 7.0 10.0
3 周斌 天津大学机械工程学院 21 204 10.0 14.0
4 梅检民 军事交通学院汽车工程系 36 118 7.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (42)
参考文献  (5)
节点文献
引证文献  (16)
同被引文献  (47)
二级引证文献  (11)
1967(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(6)
  • 引证文献(6)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(5)
  • 引证文献(5)
  • 二级引证文献(0)
2019(11)
  • 引证文献(2)
  • 二级引证文献(9)
2020(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
故障诊断
支持向量机
后验概率
D-S证据理论
信息融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
汽车工程
月刊
1000-680X
11-2221/U
大16开
北京市西城区莲花池东路102号天连大厦1003室
2-341
1979
chi
出版文献量(篇)
4728
总下载数(次)
23
总被引数(次)
66645
论文1v1指导