基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Soil organic carbon (SOC) is an important and reliable indicator of soil quality. In this study, soil spectra were characterized and analysed to predict the spatial soil organic carbon (SOC) content using multivariate predictive modeling technique-artificial neural network (ANN). EO1-Hyperion (400 - 2500 nm) hyperspectral image, field and laboratory scale data sets (350 - 2500 nm) were generated which consisted of laboratory estimated SOC content of collected soil samples (dependent variable) and their corresponding reflectance data of SOC sensitive spectral bands (predictive variables). For each data set, ANN predictive models were developed and all three datasets (image-scale, field-scale and lab-scale) revealed significant network performances for training, testing and validation indicating a good network generalization for SOC content. ANN based analysis showed high prediction of SOC content at image (R2 = 0.93, and RPD = 3.19), field (R2 = 0.92 and RPD = 3.17), and lab scale (R2 = 0.95 and RPD = 3.16). Validation results of ANN indicated that predictive models performed well (R2 = 0.90) with RMSE 0.070. The result showed that ANN methods had a great potential for estimating and mapping spatial SOC content. The study concluded that ANN model was potential tools in predicting SOC distribution in agricultural field using hyper-spectral remote sensing data at image-scale, field-scale and lab-scale.
推荐文章
Forest carbon storage in Guizhou Province based on field measurement dataset
Forest carbon storage
Field measurement dataset
Karst landform
Estimation of soil organic carbon storage and its fractions in a small karst watershed
Bare rock rate
Estimation method
soil organic carbon storage
Small watershed
Karst
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Prediction Modeling and Mapping of Soil Carbon Content Using Artificial Neural Network, Hyperspectral Satellite Data and Field Spectroscopy
来源期刊 遥感技术进展(英文) 学科 医学
关键词 Soil Carbon Artificial NEURAL Network HYPERSPECTRAL IMAGINE SPECTROSCOPY HYPERION
年,卷(期) ygjsjzyw_2015,(1) 所属期刊栏目
研究方向 页码范围 63-72
页数 10页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Soil
Carbon
Artificial
NEURAL
Network
HYPERSPECTRAL
IMAGINE
SPECTROSCOPY
HYPERION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
遥感技术进展(英文)
季刊
2169-267X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
148
总下载数(次)
0
期刊文献
相关文献
推荐文献
论文1v1指导