基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The popularity of social network services has caused the rapid growth of the users. To predict the links between users has been recognized as one of the key tasks in social network analysis. Most of the present link prediction methods either analyze the topology structure of social network graph or just concern the user’s interests. These will lead to the low accuracy of prediction.Furthermore, the large amount of user interest information increases the difficulties for common interest extraction. In order to solve the above problems, this paper proposes a joint social network link prediction method-JLPM.Firstly, we give the problem formulation. Secondly, we define a joint prediction feature model(JPFM) to describe user interest topic feature and network topology structure feature synthetically, and present corresponding feature extracting algorithm. JPFM uses the LDA topic model to extract user interest topics and uses a random walk algorithm to extract the network topology features. Thirdly,by transforming the link prediction problem to a classification problem, we use the typical SVM classifier to predict the possible links. Finally, experimental results on citation data set show the feasibility of our method.
推荐文章
基于PC-Link的PLC控制
PLC控制
PC-Link网络
通信
用于网格计算的Overlay Network 设计算法的研究
网格架构
Overlay Network
拓扑结构
拉格朗日松驰
NETWORK6000系统在酸站车间的应用
集散控制
联锁控制
NETWORK6000
粘胶短纤
闪蒸
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Joint Link Prediction Method for Social Network
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 SOCIAL Network LINK Prediction TOPIC Model RANDOM WALK
年,卷(期) 2015,(1) 所属期刊栏目
研究方向 页码范围 17-19
页数 3页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SOCIAL
Network
LINK
Prediction
TOPIC
Model
RANDOM
WALK
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导