基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This paper evaluates the efficiency of the SARFIMA model at forecasting high-frequency long memory series with especially long periods. Three other models, the ARFIMA, ARMA and PAR models, are also included to compare their forecasting performances with that of the SARFIMA model. For the artificial SARFIMA series, if the correct parameters are used for estimating and forecasting, the model performs as well as the other three models. However, if the parameters obtained by the WHI estimation are used, the performance of the SARFIMA model falls far behind that of the other models. For the empirical intraday volume series, the SARFIMA model produces the worst performance of all of the models, and the ARFIMA model performs best. The ARMA and PAR models perform very well both for the artificial series and for the intraday volume series. This result indicates that short memory models are competent in forecasting periodic long memory series.
推荐文章
The use of in-situ cosmogenic 21Ne in studies on long-term landscape development
Cosmogenic nuclides
21Ne
Long timescale
Landscape evolution
Distribution and assessment of hydrogeochemical processes of F-rich groundwater using PCA model: a c
Fluoride
Groundwater chemistry
PCA model
Hydrogeochemical processes
Yuncheng Basin
Thermodynamic properties of San Carlos olivine at high temperature and high pressure
San Carlos olivine
Thermodynamic property
Thermal expansion
Heat capacity
Temperature gradient
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Forecasting High-Frequency Long Memory Series with Long Periods Using the SARFIMA Model
来源期刊 统计学期刊(英文) 学科 医学
关键词 HIGH-FREQUENCY FINANCIAL SERIES LONG Memory LONG PERIODS SARFIMA MONTE Carlo Simulation Intraday Volume
年,卷(期) 2015,(1) 所属期刊栏目
研究方向 页码范围 66-74
页数 9页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
HIGH-FREQUENCY
FINANCIAL
SERIES
LONG
Memory
LONG
PERIODS
SARFIMA
MONTE
Carlo
Simulation
Intraday
Volume
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
论文1v1指导