基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
把一类支持向量机应用到人脸相似性学习中,提出了一种快速的人脸相似性学习方法.和标准支持向量机相比较,一类支持向量机的主要特点是只利用相似样本进行训练,减少了数据量,能快速地进行相似性学习.2个实际人脸数据库上的实验结果表明,本方法能够快速地学习到人脸相似性,其运行时间至多是支持向量机算法的三分之一.
推荐文章
基于支持向量机的人脸识别研究
人脸识别
支持向量机
离散小波变换
基于聚类算法和层次支持向量机的人脸识别方法
聚类算法
层次支持向量机
免疫算法
小波变换
基于层叠支持向量机的人脸检测研究
人脸检测
支持向量机
模式分类
基于Gabor小波支持向量机的人脸检测
Gabor小波
支持向量机
人脸检测
模式识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于一类支持向量机的快速人脸相似性学习?
来源期刊 浙江师范大学学报(自然科学版) 学科 工学
关键词 一类支持向量机 支持向量机 相似性学习 机器学习
年,卷(期) 2015,(1) 所属期刊栏目 计算机
研究方向 页码范围 67-72
页数 6页 分类号 TP391.4
字数 4095字 语种 中文
DOI 10.16218/j.issn.1001-5051.2015.01.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张莉 苏州大学计算机科学与技术学院 92 532 11.0 19.0
5 夏佩佩 苏州大学计算机科学与技术学院 4 16 2.0 4.0
9 卢星凝 苏州大学计算机科学与技术学院 2 8 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (3)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
一类支持向量机
支持向量机
相似性学习
机器学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江师范大学学报(自然科学版)
季刊
1001-5051
33-1291/N
大16开
浙江金华浙江师范大学33信箱
1960
chi
出版文献量(篇)
2287
总下载数(次)
2
总被引数(次)
10075
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导