作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This paper models a biological brain—excluding motivation (e.g., emotions)—as a Finite Automaton in Developmental Network (FA-in-DN), but such an FA emerges incrementally in DN. In artificial intelligence (AI), there are two major schools: symbolic and connectionist. Weng 2011 [1] proposed three major properties of the Developmental Network (DN) which bridged the two schools: 1) From any complex FA that demonstrates human knowledge through its sequence of the symbolic inputs-outputs, a Developmental Program (DP) incrementally develops an emergent FA itself inside through naturally emerging image patterns of the symbolic inputs-outputs of the FA. The DN learning from the FA is incremental, immediate and error-free;2) After learning the FA, if the DN freezes its learning but runs, it generalizes optimally for infinitely many inputs and actions based on the neuron’s inner-product distance, state equivalence, and the principle of maximum likelihood;3) After learning the FA, if the DN continues to learn and run, it “thinks” optimally in the sense of maximum likelihood conditioned on its limited computational resource and its limited past experience. This paper gives an overview of the FA-in-DN brain theory and presents the three major theorems and their proofs.
推荐文章
Source and composition of sedimentary organic matter in the head of Three Gorges Reservoir: a multip
Three Gorges reservior
Sedimentary organic matter
δ13C
Lignin phenols
Lipid biomarkers
Carbon dioxide emissions from the Three Gorges Reservoir, China
CO2 emissions
Three Gorges Reservoir
River-type reservoir
基于Three.js的飞行仿真系统设计
Web三维可视化
WebGL
Three.js
数据驱动
三维仿真
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Brain as an Emergent Finite Automaton: A Theory and Three Theorems
来源期刊 智能科学国际期刊(英文) 学科 数学
关键词 BRAIN Mind CONNECTIONIST AUTOMATA THEORY Finite AUTOMATON Symbolic Artificial Intelligence
年,卷(期) 2015,(2) 所属期刊栏目
研究方向 页码范围 112-131
页数 20页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BRAIN
Mind
CONNECTIONIST
AUTOMATA
THEORY
Finite
AUTOMATON
Symbolic
Artificial
Intelligence
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能科学国际期刊(英文)
季刊
2163-0283
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
102
总下载数(次)
0
总被引数(次)
0
论文1v1指导