With the advantages of MapReduce programming model in parallel computing and processing of data and tasks on large-scale clusters, a Dataaware partitioning schema in MapReduce for large-scale high-dimensional data is proposed. It optimizes partition method of data blocks with the same contribution to computation in MapReduce. Using a two-stage data partitioning strategy, the data are uniformly distributed into data blocks by clustering and partitioning. The experiments show that the data-aware partitioning schema is very effective and extensible for improving the query efficiency of highdimensional data.