基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This paper presents a back-propagation neural network model for sound quality prediction (BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and regulations, four kinds of vehicle interior noises under operating conditions, including idle, constant speed, accelerating and braking, are acquired. The objective psychoacoustic parameters and subjective annoyance results are respectively used as the input and output of the BPNN-SQP model. With correlation analysis and significance test, some psychoacoustic parameters, such as loudness, A-weighted sound pressure level, roughness, articulation index and sharpness, are selected for modeling. The annoyance values of unknown noise samples estimated by the BPNN-SQP model are highly correlated with the subjective annoyances. Conclusion can be drawn that the proposed BPNN-SQP model has good generalization ability and can be applied in sound quality prediction of vehicle interior noise under multiple working conditions.
推荐文章
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Evaluation of groundwater quality in the Dibdibba aquifer using hydrogeochemical and isotope techniq
Safwan-Zubair
Dibdibba formation
Geochemical modeling
Mixing
Stable isotopes
Basra
A study of groundwater irrigation water quality in south-central Bangladesh: a geo-statistical model
Semivariogram
Ordinary kriging model
Salinity
Irrigation water quality index
GIS
Hydrochemistry
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Sound Quality Prediction of Vehicle Interior Noise under Multiple Working Conditions Using Back-Propagation Neural Network Model
来源期刊 交通科技期刊(英文) 学科 医学
关键词 Multiple Working Conditions NEURAL Network BACK-PROPAGATION SOUND Quality PREDICTION ANNOYANCE
年,卷(期) 2015,(2) 所属期刊栏目
研究方向 页码范围 134-139
页数 6页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Multiple
Working
Conditions
NEURAL
Network
BACK-PROPAGATION
SOUND
Quality
PREDICTION
ANNOYANCE
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
交通科技期刊(英文)
季刊
2160-0473
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
254
总下载数(次)
0
总被引数(次)
0
期刊文献
相关文献
推荐文献
论文1v1指导