基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Latent Semantic Analysis involves natural language processing techniques for analyzing relationships between a set of documents and the terms they contain, by producing a set of concepts (related to the documents and terms) called semantic topics. These semantic topics assist search engine users by providing leads to the more relevant document. We develope a novel algorithm called Latent Semantic Manifold (LSM) that can identify the semantic topics in the high-dimensional web data. The LSM algorithm is established upon the concepts of topology and probability. Asearch tool is also developed using the LSM algorithm. This search tool is deployed for two years at two sites in Taiwan: 1) Taipei Medical University Library, Taipei, and 2) Biomedical Engineering Laboratory, Institute of Biomedical Engineering, National Taiwan University, Taipei. We evaluate the effectiveness and efficiency of the LSM algorithm by comparing with other contemporary algorithms. The results show that the LSM algorithm outperforms compared with others. This algorithm can be used to enhance the functionality of currently available search engines.
推荐文章
Semantic Web研究综述
Semantic Web 网络服务 RDF RDF schema Topic maps 本体 代理 规则 逻辑 证明 信任
Thermodynamic properties of San Carlos olivine at high temperature and high pressure
San Carlos olivine
Thermodynamic property
Thermal expansion
Heat capacity
Temperature gradient
Semantic Web与Agent的共生及融合
语义网
代理
共生
融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Identifying Semantic in High-Dimensional Web Data Using Latent Semantic Manifold
来源期刊 数据分析和信息处理(英文) 学科 工学
关键词 LATENT SEMANTIC MANIFOLD CONDITIONAL Random Field Hidden Markov Model Graph-Based Tree-Width Decomposition
年,卷(期) 2015,(4) 所属期刊栏目
研究方向 页码范围 136-152
页数 17页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
LATENT
SEMANTIC
MANIFOLD
CONDITIONAL
Random
Field
Hidden
Markov
Model
Graph-Based
Tree-Width
Decomposition
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据分析和信息处理(英文)
季刊
2327-7211
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
106
总下载数(次)
0
总被引数(次)
0
论文1v1指导