基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
现代电视媒体经营中,要想在日益完善的经济竞争机制中增加收益,对于电视媒体来说至关重要,本文通过对全国样本城市的收视率数据进行了周一至周日的走势分析,并在走势相同的情况下对周四的收视率进行了时间序列建模分析,在将原始非平稳序列经二阶差分后进行了ARIMA建模。
推荐文章
基于RBF神经网络的电视收视率预测
RBF神经网络
收视率
预测
论电视节目的收视率
电视节目
收视率
因素
提高
收视率分析与电视节目编排策略
电视台
电视节目
收视率
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于ARIMA模型的全国电视收视率实证分析
来源期刊 中国传媒大学学报(自然科学版) 学科 经济
关键词 收视率 时间序列 ARIMA模型
年,卷(期) 2015,(3) 所属期刊栏目
研究方向 页码范围 29-34
页数 6页 分类号 F064.1
字数 2751字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张辉 中国传媒大学理学院 44 130 7.0 10.0
2 连聪聪 中国传媒大学理学院 3 19 1.0 3.0
3 刘永菲 中国传媒大学理学院 3 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (18)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
收视率
时间序列
ARIMA模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国传媒大学学报(自然科学版)
双月刊
1673-4793
11-5379/N
16开
北京市朝阳区定福庄东街1号(中国传媒大学30号信箱)
1994
chi
出版文献量(篇)
1230
总下载数(次)
8
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导