基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Results of dynamic and equilibrium of sorption of a reactive dye Remazol Brilliant Blue, and a bactericidal agent, Digluconate of Chlorhexidine over Polyamide fibers are presented with the aim of supplying the fiber with bactericidal properties. However, adsorption of Chlorhexidine onto Polyamide is scarce due to the lack of interactions between the reactive groups of the fiber and the antiseptic molecule. Therefore, in order to provide the fiber surface with anionic groups, fiber has been previously dyed with Remazol Brilliant Blue which increases the negative charge of the fiber surface due to the presence of its sulfonate end groups. Thermodynamic parameters of equilibrium sorption in the two situations, fiber/dye and fiber-dye/Chlorhexidine, have been analyzed, as function of the temperature, pH and concentration of the dye in the pretreatment. Results show that when sorption of Remazol Brilliant Blue reaches the value of about 50 mmol/ kg at the higher temperature and concentration tested, the amount of Chlorhexidine adsorbed exhibits its maximum value which is 6 mmol/kg. Both processes, adsorption of Remazol Brilliant Blue and adsorption of Chlorhexidine, fit well to Langmuir adsorption model, suggesting the existence of some kinds of specific interactions between adsorbent and adsorbate. Thermodynamic functions show that the interaction is endothermic and spontaneous in all the rage of temperature tested. The kinetic studies show that sorption of Remazol Brilliant Blue is better described by pseudo-first order model, while sorption of Chlorhexidine fits better to pseudo-second order model, and seems to be quicker process. According to the obtained results, chemical interaction between the vinyl-sulfone group of Remazol Brilliant Blue and the amine groups of Polyamide fiber, followed by electrostatic interactions between the guanine group of the Chlorhexidine and the sulfonate group of the dye must be considered in order to explain the adsorption process.
推荐文章
Thermodynamic properties of San Carlos olivine at high temperature and high pressure
San Carlos olivine
Thermodynamic property
Thermal expansion
Heat capacity
Temperature gradient
Using electrogeochemical approach to explore buried gold deposits in an alpine meadow-covered area
Electrogeochemistry
Buried mineral deposit
Ideal anomaly model
Alpine-meadow covered
Ihunze
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Polyamide Fibers Covered with Chlorhexidine: Thermodynamic Aspects
来源期刊 表面工程材料与先进技术期刊(英文) 学科 化学
关键词 NYLON 6.6 Reactive DYE CHLORHEXIDINE ADSORPTION Isotherms Kinetic of ADSORPTION
年,卷(期) 2015,(4) 所属期刊栏目
研究方向 页码范围 190-206
页数 17页 分类号 O6
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
NYLON
6.6
Reactive
DYE
CHLORHEXIDINE
ADSORPTION
Isotherms
Kinetic
of
ADSORPTION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
表面工程材料与先进技术期刊(英文)
季刊
2161-4881
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
211
总下载数(次)
0
总被引数(次)
0
论文1v1指导