基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Common forms of short text are microblogs, Twitter posts, short product reviews, short movie reviews and instant messages. Sentiment analysis of them has been a hot topic. A highly-accurate model is proposed in this paper for short-text sentiment analysis. The researches target microblog, product review and movie reviews. Words, symbols or sentences with emotional tendencies are proved important indicators in short-text sentiment analysis based on massive users’ data. It is an effective method to predict emotional tendencies of short text using these features. The model has noticed the phenomenon of polysemy in single-character emotional word in Chinese and discusses singlecharacter and multi-character emotional word separately. The idea of model can be used to deal with various kinds of short-text data. Experiments show that this model performs well in most cases.
推荐文章
A re-assessment of nickel-doping method in iron isotope analysis on rock samples using multi-collect
Fe isotope
Ni-doping
Stable isotope
Precision and accuracy
Mass bias correction
Pseudo-high mass resolution
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
Hydrogeochemical processes and multivariate analysis for groundwater quality in the arid Maadher reg
Groundwater quality
Hydrogeochemical processes
Multivariate analysis
Salinity
Mio-Plio
Quaternary aquifer
Comprehensive geochemical/hydrochemical and geo-thermometry analysis of Unai geothermal field, Gujar
Geothermal energy
Hydrochemical
Geochemical
Geothermometery
Renewable energy
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 An Unsupervised Method for Short-Text Sentiment Analysis Based on Analysis of Massive Data
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 SENTIMENT ANALYSIS SHORT text EMOTIONAL WORDS MASSIVE data
年,卷(期) 2015,(1) 所属期刊栏目
研究方向 页码范围 49-50
页数 2页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SENTIMENT
ANALYSIS
SHORT
text
EMOTIONAL
WORDS
MASSIVE
data
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导