基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
点云数据分割是点云数据处理的主要工作,也是实现地物自动识别的前提和关键环节,由于各种原因,目前点云数据分割自动化程度不高,尚需进一步的深入研究。本文以机载云数据为研究对象,提出了基于密度聚类方法的激光点云数据分割方法,该方法具有速度快、分割效果好、适应性强等优势,为后续的地物自动识别奠定了基础。
推荐文章
应用遗传模糊聚类实现点云数据区域分割
模糊聚类
遗传算法
区域分割
点云数据
逆向工程
基于真实核心点的密度聚类方法
密度聚类
模糊边界点
核心点
合并
基于密度聚类的医学图像分割DCMIS
医学图像分割
核密度估计
密度聚类
爬山算法
基于数据密度感知的非平衡数据模糊聚类方法
模糊聚类
分布密度
非平衡数据
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 密度聚类方法在点云数据分割中的应用研究
来源期刊 测绘与空间地理信息 学科 地球科学
关键词 LiDAR 点云 密度聚类 自动分割
年,卷(期) 2015,(1) 所属期刊栏目 博士园地
研究方向 页码范围 44-47
页数 4页 分类号 P208
字数 2730字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (36)
参考文献  (11)
节点文献
引证文献  (4)
同被引文献  (7)
二级引证文献  (0)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
LiDAR
点云
密度聚类
自动分割
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测绘与空间地理信息
月刊
1672-5867
23-1520/P
大16开
哈尔滨市南岗区测绘路32号
14-5
1978
chi
出版文献量(篇)
11361
总下载数(次)
46
总被引数(次)
45485
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导