Models for the study of computational fluid dynamics in vehicles to determine aerodynamic loads usually take into account only the geometry of the body. Several constructive elements such as the wheel geometry or suspension components are disregarded in the computational models. This work presents the study of the aerodynamics of a one-fourth model passenger vehicle, which contains the wheelhouse interior elements. The goal is to identify the aerodynamic loads produced by these components and their effect on the flow dynamics. Wheel and tire set, brake components, suspension and drive shaft are contemplated. Computer simulations were performed to the vehicle speed varying from 0 to 120 km/h and included the rotation of the tire and wheel assembly, considering the tire geometry in dynamic conditions. The computational model is solved by the finite volume method, wherein the computational domain is divided into tetrahedral and hexahedral elements. The turbulence model used is the standard k −ε.