FPGA implementation used of Rotating phase shift (RPS) for peak-to-average power ratio (PAPR) reduction in Multi Carrier Code Division Multiple Access (MC-CDMA) signals. Because, MC-CDMA is still suffering from PAPR which is a major drawback in most of the multi carrier communication systems. In addition, the implementation of the system in an FPGA becomes more flexible and scalable. It eliminates the search for optimum phase factors from a given set, which manifests improved PAPR at reduced computational complexity as compared to conventional PTS and SLM. The amplitude of the signal is reduced by rotating each of the partially transmitted sequence anticlockwise by a π/2 degree and the peak power is reduced by circularly shifting the quadrature component of the partially transmitted sequence after phase rotation. A brief description of PTS, SLM is compared with the RPS, which best reduces PAPR from PTS and SLM. It is also presented that VHDL code of the RPS is designed by Xilinx ISE 14.1 implements of FPGA. The peak-to-average power ratio performance of the proposed method has been investigated.