Paul Erdös和Noga Alon等人给出了一般意义的Ramsey数理论,本文通过概率方法给出了高维情况下的Ramsey数理论及其推广的一般形式。给出了等概率2-着色情况:当k=l时Rd(k,k)的下界结果;当k与l有区分时Rd(l,k)的下界结果。给出了等概率3-着色情况:当k=l=m时Rd(k,k,k)的下界结果;当k,l,m有区分时Rd(l,k,m)的下界结果。给出了r-着色情况下:当k1=k2=...=kr时Rd(k,k,...k)的下界结果;当k1,k2,...,kr有区分时Rd(k1,k2,...,kr)的下界结果。最后又给出了不等概率时上述各种情况下的相应结果。